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Abstract

A continuous wavelet transform (CWT) based on the Gabor wavelet function is used to identify the
damping of a multi-degree-of-freedom system. The common procedures are already known, especially the
identification with a Morlet CWT. This study gives special attention to the following: a description of
the instantaneous noise, the edge-effect of the CWT, the frequency-shift of the CWT, the bandwidth of the
wavelet function and the selection of the parameter s of the Gabor wavelet function of the CWT. The
procedures are demonstrated using several numerical examples and on signals acquired from the lateral
vibration of a uniform beam. The study demonstrates the advantages of using the amplitude and phase
methods, both of which provide information about the instantaneous noise. The procedures presented are
appropriate for automating the identification process.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The damping of dynamic systems is the dissipation of vibration energy. Usually, a considerable
amount of this energy dissipates inside the system, mostly in the form of heat, while the rest
dissipates outside the system in the form of acoustic radiation, transmission to other dynamic
systems, etc.

Compared to an estimation of the stiffness and mass properties of multi-degree-of-freedom
(MDOF) systems an estimation of the damping parameters is more difficult. The factors affecting
damping mechanisms include friction on the atomic/molecular level, dry friction, viscous friction
in fluids, etc., and so it is often difficult to describe in detail the real physical background using
mathematical means. As a consequence of this, a number of simplified models were developed. Of
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these models, the model of viscous damping is the most widely used, it assumes that the damping
force is proportional to the velocity of oscillation; and so it follows that the work done by one
oscillation cycle depends on the frequency of oscillation. Another commonly used model is the
model of structural damping, where the work done in one cycle is independent of the oscillation
frequency and where the dissipation of vibrational energy is proportional to the square of the
amplitude [1]. To overcome the shortcomings of the different models the model of equivalent
viscous damping is used. In this paper the damping is discussed in terms of the damping ratio, i.e.,
the fraction of critical damping. As a result, the damping matrix can be assumed to be
proportional to the mass or stiffness matrix, so the system of differential equations can be
uncoupled [1].

A number of damping measures and criteria are used to characterize structural damping [1–3].
An overview of several time, frequency and time–frequency domain techniques can be found in
Staszewski [4]. In his work, Staszewski introduced a method for estimating the damping ratio
based on the continuous wavelet transform (CWT) and the Morlet wavelet function. Besides
being useful in several other applications [5–7], this time-scale method appears to be appropriate
for estimating the damping in MDOF systems [4,8–13].

Argoul et al. [8] proposed a new, weighted integral transform. They showed that the co-
ordinates of the extreme of the imaginary part of the new integral transform provide a good
estimation of the modal frequencies and the damping ratios. Yin and Argoul [9] used a slightly
different integral transform: with an additional parameter they were able to identify the modal
parameters of linear systems, even with strong coupled modes. In contrast, Lamarque et al. [10]
and Hans et al. [11] used a wavelet-based formula which is similar to the logarithmic decrement
formula. This method simultaneously provides the modal decoupling and an estimate of the
damping ratio.

The present work is closely related to the Staszewski [4] method, which is based on a wavelet
reconstruction formula for asymptotic signals. In this paper some extensions of the method will be
presented.

For the sake of completeness, Section 2 gives the background to the CWT and the basic concept
of damping identification using the CWT. Section 2 also discusses some extensions of the
Staszewski method: the identification of damping using the Gabor wavelet and the quantitative
characterization of close modes. Further extensions of the Staszewski method are given in
Sections 3 and 4. Section 3 discusses the edge-effect of the CWT and Section 4 the instantaneous
signal-to-noise ratio (SNR) and the instantaneous normalized mean square error (nMSE).
Sections 5 and 6 provide applications to real data, with Section 6 paying special attention to the
experimental data of a uniform beam.

2. Estimation technique

2.1. Theoretical background of the wavelet transform

In this subsection only a few basic definitions are presented; for an exhaustive study the reader
should refer to other literature, e.g., Refs. [14,15].
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The CWT of the signal xðtÞAL2ðRÞ is defined as

Wxðu; sÞ ¼
Z þN

�N

xðtÞcn

u;sðtÞ dt; ð1Þ

where u and s are the translation and scale/dilation parameters, respectively [16], and cnðtÞ is the
complex conjugate of the basic wavelet function cðtÞAL2ðRÞ:

The wavelet function is a normalized function (i.e., the norm is equal to 1) with an average
value of zero:

jjcðtÞjj2 ¼
Z þN

�N

jcðtÞj dt ¼ 1; ð2Þ

%cðtÞ ¼
Z þN

�N

cðtÞ dt ¼ 0: ð3Þ

Table 1 shows the norm and the mean values of the Morlet and Gabor wavelet functions [5]. In
both cases the selection of suitable parameters s and Z makes the mean value very close to zero.
While the norm of the Gabor wavelet is equal to 1, the norm of the Morlet wavelet is not.
However, the Morlet wavelet function can be normalized by multiplying it by 1=

ffiffiffi
p4

p
: The

normalized Morlet wavelet function is identical to the Gabor wavelet function with the parameter
s ¼ 1: The additional parameter s of the Gabor wavelet function provides the possibility of
adapting the time and frequency spread and will be discussed later in this paper.

The translated and dilated wavelet function is defined as

cu;sðtÞ ¼
1ffiffi

s
p c

t � u

s

� �
: ð4Þ

The Gabor wavelet function is defined as

cGaborðtÞ ¼
1

ðs2pÞ1=4
e�t2=ð2s2Þ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gaussian window

� eiZt; ð5Þ

where parameter s and the initial scale define the time and frequency spread of the Gabor wavelet
function [7]; Z is the parameter of frequency modulation.

In this study the term ‘‘normalized parameter s’’ (s1 Hz) is used; this is the s that would be used
in the case of a signal with a frequency of 1Hz. The appropriate parameter s for any other
frequency is: s1 HzDt; where Dt is the time step of the discretization.

Table 1

The norm and the mean value of the Morlet and Gabor wavelets

Property Gabor Morlet

jjcðtÞjj2 1 p
%cðtÞ

ffiffiffiffiffiffiffiffiffiffiffi
4 ps24

p
e�Z2 s2=2 e�Z2

ffiffiffiffiffi
2 p

p
=2
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The relation between the instantaneous scale s and the instantaneous angular velocity o of the
Gabor wavelet function is defined as

oðsÞ ¼
Z
s
: ð6Þ

A very useful property of the CWT is its linearity:

W
XN

i¼1

ai xi

 !
ðu; sÞ ¼ ai

XN

i¼1

W xið Þðu; sÞ; ð7Þ

which makes it possible to analyze each ith component xi of a multi-component signal
PN

i¼1 ai xi;
where ai is a constant.

2.2. Damping identification using a wavelet transform

It is assumed that the signal xðtÞ is sinusoidal (8) and asymptotic, i.e., the signal’s amplitude
varies slowly compared to the variation of its phase [17]

xðtÞ ¼ AðtÞ cosjðtÞ: ð8Þ

In the case of such a signal its CWT can be approximated by a simple function. Staszewski [4] and
Ruzzene et al. [18] used the Morlet wavelet function, and as a consequence they used the CWT
approximation as defined by Delprat et al. [19]. In this paper the approximation of the CWT
based on the Gabor wavelet function is used (for the derivation see Appendix A):

Wxðu; sÞ ¼ 1
2

AðuÞ #cGaboru;sðj
0ðuÞ; s; ZÞ ei jðuÞ þ Er A0ðtÞ;j00ðuÞ

� �
; ð9Þ

where the Fourier transform of the translated and scaled Gabor wavelet function is defined as

#cGaboru;sðo;s; ZÞ ¼ ð4ps2s2Þ1=4 e� o�Z=sð Þ2s2s2=2 e�i o u: ð10Þ

The approximation error Er A0ðtÞ;j00ðuÞð Þ can be neglected if the derivative of the phase is greater
than the bandwidth Do [14]:

j0ðuÞXDo: ð11Þ

The bandwidth Do of the translated and scaled Gabor wavelet function is defined as [14]

ez1 ¼
#wGauss s o;sð Þj j
#wGauss 0;sð Þj j

{1 where js ojXDo; ð12Þ

where #wGauss is the Gaussian window (see Eq. (5)).
It follows that the bandwidth of the wavelet transform is

DoðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�2 z1

s2s2

r
; ð13Þ

where the parameter z1 needs to be chosen; if z1 ¼ �8 (the value used in this study) is chosen then
the value of the wavelet at the bandwidth is only 34	 10�3% of the maximum value.

For the CWT of any two components i and j of a multi-component signal not to interfere, the
maximum of the bandwidth DoðsiÞ and DoðsjÞ should be smaller than the frequency difference of i
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and j [14]:

ðj0
iðuÞ � j0

jðuÞÞXmaxfDoðsiÞ;DoðsjÞg: ð14Þ

The time-scale representation of the energy concentration of the CWT is called the ridge. Ridges
are described with the use of curves s ¼ sðuÞ: In other words, ridges represent the frequency
content of the analyzing signal with a high density of energy, which is dependent on the time
(translation u). The values of the CWT that are restricted to the ridge are called the skeleton of the
CWT–Wxðu; sðuÞÞ:

In the following the free response of a damped signal is focussed upon [1]:

xðtÞ ¼ A0e
�zo0t cos ðo0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z2Þ

q
t þ fÞ: ð15Þ

With the CWT it is possible to determine only the damped angular velocity od ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
;

which differs slightly from the undamped natural angular velocity o0: In future derivations od

must be used instead of o0; however, because the damping ratio z is usually small (z{1) the error
is insignificant. In dynamics this substitution is usual.

The procedure for damping-ratio extraction is now just the same as in the case of the Morlet
wavelet [4]. First, Eq. (10) is inserted into Eq. (9) and the error part is neglected. Because attention
was paid to the ridge, the angular velocity of the Gabor wavelet function (o ¼ Z=s) is equal to the
angular velocity of the signal (od), and as a consequence the term e� od�Z=sð Þ2s2s2

0
=2 is equal to 1.

Finally, the next expression is derived

ln
2jWxðu; sðuÞÞj

ð4p s2sðuÞ2Þ1=4

 !
E� zod u þ ln A0: ð16Þ

It is clear that this equation represents a linear function and from its slope the damping ratio z can
be estimated.

To reconstruct the signal the following functions can be derived:

jðuÞ ¼ arctan
ImðWxðu; sðuÞÞÞ
ReðWxðu; sðuÞÞÞ

; ð17Þ

AðuÞE
2jWxðu; sðuÞÞj

ð4p s2sðuÞ2Þ1=4
: ð18Þ

Now the only problem is the characterization of the ridge sðuÞ:

2.3. Ridge detection

Detailed explanations of the various methods for ridge extraction can be found elsewhere [4,17–
20]. For the sake of completeness a brief explanation of the three simplest methods is given here.
The first method is called the cross-section method (CM). It is based on the pre-known damped
frequency od : The ridge is constant and is defined as

sðuÞ ¼
Z
od

: ð19Þ

The amplitude method (AM) is based on the maxima of the CWT, while the phase method (PM)
is based on matching the angular velocity of the CWT with the angular velocity of the wavelet
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function. It is known that the natural frequencies of linear systems have a constant angular
velocity, so extreme searching for the instantaneous frequency seems needless, but the point lies
elsewhere. The search algorithms return information about the instantaneous noise; when the
level of noise is too high the detected instantaneous natural frequency will deviate from the
expected natural frequency. By defining the maximum deviation range the return information can
be used to interrupt the identification procedure of damping.

3. The edge-effect

Fig. 1 shows the difference between the CWT of an infinite sinusoidal signal with constant
amplitude (a) and the CWT of a finite signal xðtÞa0; if f0:0ptp0:5g in part (b) of the figure.

The difference arises because of the nature of the CWT. According to Eq. (1) the frequency
spectrum at some translation u is calculated with the help of a wavelet in the neighbourhood of u:
At the beginning and at the end of the signal a part of the wavelet is outside the signal (Fig. 2).
The CWT at the edges of the signal is therefore not proportional to the CWT when the window is
almost entirely in the signal; this is called the edge-effect. There is no known method to eliminate
this problem, so this study focused on characterizing the time when the edge-effect is not
negligible.

For the case of a Gaussian window the time-width (uwd) of the edge-effect is

ez2 ¼
wGaussu;sðt ¼ �uwd ;sÞ

wGaussu;sðt ¼ 0s; sÞ
; ð20Þ

which leads to

uwd ¼ 7s s
ffiffiffiffiffiffiffiffiffiffi
�2

3z2

q
: ð21Þ

The parameter z2 needs to be chosen. If the damping ratio is expected to be very small then the
edge-effect is more noticeable and the parameter z2 should be more carefully chosen. For example,
in practice z2 ¼ �20 is needed for a damping ratio of zE100	 10�6 and z2 ¼ �10 is enough for a
damping ratio of zE100	 10�3:

The parameter s of the Gabor wavelet is the only parameter that can be changed significantly.
If a smaller value for s is chosen, the edge-effect is less noticeable; but the consequence of this is a
larger frequency spread of the wavelet function, this means that the frequency bandwidth gets
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Fig. 1. Wavelet transform of a infinite signal (a) and a finite signal (b).
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larger and close modes are more difficult to extract. On the other hand, a larger value of s is more
appropriate for analyzing close modes, but the consequence is not only a larger edge-effect but
also the danger of losing the time locality of the wavelet transform.

However, usually we can afford a small s parameter, but then we come to the next problem—
the frequency-shift of the CWT amplitude extreme.

4. Frequency-shift of the CWT amplitude extreme

An obvious frequency-shift of the amplitude extreme of the CWT occurs in the case of a small
parameter s: The size of this shift can be defined analytically.

If there is a sinusoidal signal xðtÞ ¼ A0 coso0t of constant amplitude A0 and of constant
angular velocity o0; then its CWT can be derived exactly:

Wxðu; sÞ ¼
Z þN

�N

A0 cos ðootÞcn

Gaboru;s
ðtÞ dt; ð22Þ

Wxðu; sÞ ¼
A0

2
ð4p s2 s2Þ1=4e�i u o0�s2ðZþs o0Þ2=2ð1þ e2 i u o0þ2s Z s2 o0Þ: ð23Þ

To find the extreme of this CWT the first derivative at s is sought. To simplify the task the partffiffi
s

p
e�s2ðZþs o0Þ

2=2E0 is neglected. It is found that the extreme is

s ¼
Z sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ Z2 s2

p
2 s o0

: ð24Þ

With the use of the second derivative it can be verified that the extreme is a maxima in the
neighbourhood of s ¼ Z=o0:

According to Eq. (6) the frequency-shift is

o� o0 ¼
Z
s

� �
�

Z sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ Z2 s2

p
2 s s

 !
¼

Z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=s2 þ Z2

p
2 s

 !
: ð25Þ

Fig. 3 shows the ridges of the CWT defined on the amplitude maxima of the wavelet transform
based on the Gabor wavelet function of a 311.3Hz signal; part (a) shows the ridge that takes no

Time [s]

Fig. 2. Edge-effect in the time domain.
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account of the frequency-shift, while part (b) shows the ridge when the frequency-shift is taken
into account.

5. Instantaneous SNR and nMSE

5.1. Instantaneous SNR

In the case of a transient signal the classical definition of the SNR (Eq. (26)) is inappropriate.
Fig. 4a shows a signal with zero mean Gaussian noise SNR ¼ 30 dB:

SNR ¼ 10 log10

varðsignalÞ
varðnoiseÞ

� �
: ð26Þ

However, if it is assumed that the variance of the noise is constant (or nearly constant), then it is
possible to calculate the instantaneous SNR ratio. It is clear that the mean value of a sinusoidal
signal with a constant amplitude A0 is equal to zero:

meanðA sinotÞ ¼ lim
T-N

1

2T

Z þT

�T

A sinot dt ¼ 0: ð27Þ

The variance of the same signal is

varðA sinotÞ ¼ lim
T-N

1

2T

Z þT

�T

meanðA sinotÞ � A sinotð Þ2 dt; ð28Þ

varðA sinotÞ ¼
A2

2
: ð29Þ

Consequently, the instantaneous variance of the free damped response (15) is

varðxðtÞÞ ¼
A2

0 e�2 zod t

2
: ð30Þ
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And finally, the instantaneous SNR is

SNRðtÞ ¼ 10 log10

A2
0 e�2 zod t

2 varðnoiseÞ

� �
: ð31Þ

Fig. 4b shows the instantaneous SNR of the signal with an average SNR ¼ 30 dB shown in
Fig. 4a. The difference between the average SNR, which is 30 dB, and the instantaneous SNR,
which ranges from 44 to �80 dB can be seen.

While a signal is analyzed at nearly constant frequency it must be borne in mind that the power
of noise is frequency dependent. Often colours are used to describe noise: purple, blue, white, pink
and red/brown. Usually, the most important are white noise, which is independent of frequency,
and pink noise, the power of which is proportional to 1=f : Later in the paper the allowed
frequency deflection will be introduced. If this deflection is set too wide then maybe the
assumption of constant frequency does not hold and it might be expected that the actual noise
ratio will be slightly higher or lower than that calculated on the assumption of a constant variance
of noise.

5.2. Instantaneous nMSE

The nMSE of two signals is defined as [21]

nMSEðx; yÞ ¼
1

N varðxÞ

XN

k¼1

ðxk � ykÞ
2; ð32Þ

where x is the theoretical impulse response function, y is the recovered response function, and N is
the discrete length of functions x and y:

To calculate the instantaneous nMSE a rectangular window was used, the width of the window
being 72ssðuÞ: The width was chosen according to the width of the Gaussian window used in the
CWT at 95% of the area [22].

The instantaneous nMSE used in this study is defined as

nMSEðx; yÞðuÞ ¼
1

N varðxÞ

XN

k¼1

wkðuÞ ðxk � ykÞ
2; ð33Þ
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Fig. 4. (a) The signal of SNR ¼ 30 dB; (b) the instantaneous SNR.
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where wkðuÞ represents the rectangular window

wkðuÞ ¼
1; ju � tkjp2ssðuÞ;

0; otherwise:

(
ð34Þ

A similar procedure could also be used in the case of the instantaneous SNR.

6. Numerical example

In this Section numerical examples are given. The basic intention is to make some additional
statements that refer to practical examples.

6.1. Resistance to noise

In this subsection only the signals of single-degree-of-freedom systems are used; the reason for
this is that the instantaneous SNR can only be calculated exactly for such a signal. The parameters
of three sample signals are given in Table 2. The first signal is a low-frequency signal with high
damping, the second is a high-frequency signal of 647Hz and the last is also a high-frequency
signal but with small damping. The frequency resolution of the CWT was chosen to be
approximately 0.05% of the signal frequency. The normalized parameter s (the s for the 1Hz
signal) of the Gabor wavelet function was chosen according to Fig. 5a.

The identification data is given in Table 3. The allowed frequency deviation was set to :5% of
the signal frequency.

Special attention is to be given to signal 1 (Fig. 4a). Fig. 4b shows the instantaneous SNR of
signal 1. The time-window of the CM is the whole time of the signal without the time-width on
both ends. The logarithm of the amplitude is shown in Fig. 5b (see also Eq. (16)). It is clear that

Table 2

Parameters of discrete signals and their CWT

Parameter Signal 1 Signal 2 Signal 3 Note

Discrete signals

A0 1.0 1.0 1.0 Amplitude

f (Hz) 19 647 2003 Frequency of signal

z 0.0300 0.0020 0.0001 Damping ratio

T (s) 4 1 1 Time-length

N 1000 6500 20000 Number of discrete points

SNR (dB) 30 Average SNR

Wavelet transform

s1 Hz 2 4 7 Normalized s
s 0.0080 0.00062 0.00035 Parameter s
Df (Hz) 0.015 0.3 1 Frequency resolution

Z (Hz) 250 6500 20000 Frequency modulation

uwd (s) 0.272 0.016 0.009 Time-width
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the linear regression is not a suitable approximation. The maximum SNR is 71.3 dB. The damping
ratio estimation is, as expected, poor. On the other hand, the AM and PM give better results. The
ridge of the PM is shown in Fig. 6a, according to Table 3 and Fig. 4b the SNRðtÞ at the break
point is 5 dB. This break point occurs when the ridge frequency deviates from the expected
frequency by more than 70:5%. The nMSE at the time of break is negligible, but this would
rapidly grow after about �5 dB of SNR (Fig. 6b). The identification using the AM does not differ
significantly from the one using PM.

From Table 3 it can be seen that the identification of the damping ratio of signals 2 and 3 is also
very good. Note that the defined deviation of 70:5% could be greater in the case of a low-
frequency signal and smaller in the case of a high-frequency signal. However, if the length of the
signal permits the identification of the low-noise part of the signal, then the deviation should be
smaller.
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Fig. 5. (a) The normalized parameter s; (b) logarithm of the amplitude of the signal 1, —signal, - - - linear regression.

Table 3

Damping identification.

Method SNR (dB) Time-window (s) z Erz (%)

Signal 1 (zteor ¼ 30e-3)

CM 36 to �71.3 0.272–3.720 16.4e–3 �45.20

AM 36 to 5.12 0.272–1.264 29.8e–3 �0.84

PM 36 to 5.00 0.272–1.268 29.7e–3 �0.86

Signal 2 (zteor ¼ 2e–3)

CM 41 to �27.4 0.016–0.9844 1.9e–3 �3.02

AM 41 to 1.57 0.016–0.5739 2.0e–3 0.96

PM 41 to 1.60 0.016–0.5735 2.0e–3 0.96

Signal 3 (zteor ¼ 500e–6)

CM 40.5 to �13.20 0.009–0.9909 499.6e–6 �0.09

AM 40.5 to �8.42 0.009–0.9041 498.3e–6 �0.34

PM 40.5 to �8.44 0.009–0.9044 498.3e–6 �0.33
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6.2. The identification of damping at close modes

In the case of a signal with several natural frequencies the condition of Eq. (14) needs to be
considered. Here a signal of two natural frequencies is analyzed, although the procedure for more
natural frequencies is similar. The parameters of signal 4 are given in Table 4.

Compared to signal 1 the parameter s of the Gabor wavelet is higher (s1 Hz ¼ 3); the frequency
spread is therefore more localized. Actually, the bandwidths are 4 and 4.9Hz (in the case of
s1 Hz ¼ 2; the bandwidths are 6 and 7.3Hz). Because the frequency difference of both components
is 4Hz, the second component influences the CWT of the first component; but the influence of the
first component on the second one is negligible. Larger error in the damping identification of the
first component is therefore actually expected (Table 5). The instantaneous SNR given in the table
is calculated for a one-component signal of each frequency and therefore mentioned for
orientation only.

Table 4

Parameters of discrete signal 4 and its CWT

Parameter Component 1 Component 2 Note

Discrete signal

A0 1.0 1.0 Amplitude

f [Hz] 19 23 Frequency of signal

z 0.030 0.015 Damping ratio

T [s] 4 4 Time length

N 1000 1000 Number of discrete points

SNR [dB] 30 30 Average SNR

Wavelet transform

s1 Hz 3 3 Normalized s
s 0.012 0.012 Parameter s
Df (Hz) 0.015 0.015 Frequency resolution

Z (Hz) 250 250 Frequency modulation

uwd (s) 0.408 0.337 Time-width

Do (Hz) 4.03 4.88 Bandwidth
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Fig. 6. Ridge of signal 1 by PM; (b) normalized MSE(t) for the case of the PM.
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7. Experiment

The procedures were also tested on signals acquired from the lateral vibration of a uniform
beam (r ¼ 7850 kg=m3; E ¼ 2:1	 105 MPa), with the free-free boundary conditions. Fig. 7 shows
the experimental set-up.

The list of accessories is:

B&K type 4384 accelerometer,
B&K Nexus conditioning amplifier, and
IBM-compatible personal computer with a 12-bit NI AT-MIO-16E-1 acquisition card.

Hysteretic damping was used as a model for the energy dissipation, according to Beards [23]

z ¼ !Z=2; ð35Þ

where !Z is the hysteretic damping factor. Because the measured signal is asymptotic the measured
acceleration is nearly proportional to the displacement (the error is negligible). Therefore, the
acceleration data can be directly used for damping identification.

Fig. 8 shows the scalogram of the experimental data. The frequency (scale) range is from 200 to
2000Hz. The first three natural frequencies can be clearly seen. To identify the damping ratio of
the natural frequencies the following procedure is required:

* extract the natural frequency (can be done with a classical Fourier transform),
* extract the ridge (CM, AM or PM),
* extract the skeleton,
* calculate the envelope (Eq. (18)), and
* extract the damping ratio (Eq. (16)).

The CWT was calculated in the neighbourhood of each natural frequency, the maximum
allowed deviation frequency was 70:5% of the natural frequency and the frequency resolution of
the CWT was about one-tenth of the maximum deviation frequency. The parameters of the CWT
for each natural frequency are given in Table 6.

Table 5

Damping identification

Method SNR (dB) Time-window (s) z Erz (%)

Signal 4–component 1 (zteor ¼ 30e-3)

CM 31.7 to �67.1 0.408–3.584 15.06e-3 �49.80

AM 31.7 to �15.2 0.408–1.916 27.8e-3 �7.46

PM 31.7 to �14.8 0.408–1.904 27.8e-3 �7.21

Signal 4–component 2 (zteor ¼ 15e-3)

CM 36 to �26.4 0.340-3.652 14.3e�3 �4.96

AM 36 to 3.36 0.340-2.072 14.9e-3 �0.44

PM 36 to 2.91 0.340-2.096 14.9e-3 �0.43
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The damping parameters for each natural frequency are given in Table 7. If the particular
natural frequency is present for a relatively long time, then there is usually no need to use the
identification procedures on the whole time-length. This was the case in the first two natural
frequencies; the break point of damping identification is therefore not reached. However, by

0.0066
0.6666

1.3266
1.9866

200. 500. 800. 1100. 1400. 1700. 2000.

Time [s]

Frequency [Hz]

Wx

~309Hz

~851Hz

~1652Hz

2

Fig. 8. Scalogram of the experimental data.

Table 6

Parameters of the CWT

Natural frequency

Parameter 1st 2nd 3rd Note

Wavelet transform

f0 (Hz)E 309 851 1652 Natural frequency

s1 Hz 3 5 6 Normalized s
s 99e-6 165e-6 198e-6 Parameter s
Df (Hz) 0.15 0.4 0.6 Frequency resolution

uwd (ms) 25.06 15.19 9.38 Time-width

Do (Hz) 66 108 175 Band-width

Z (Hz) 30303 Frequency modulation

Fig. 7. Experiment set-up.
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analyzing the damping at the third natural frequency, the AM reaches the break point at 1.152 s
and the PM reaches it 1ms later (Fig. 9a). As expected, the CM gives a wrong result (Fig. 9b).

According to Cremer et al. [24] the hysteretic damping parameter of the bending vibration of
steel can be expected to be in the range from 200 	 10�6 to 600 	 10�6: While the results for the
tested, uniform beam are not so general, the hysteretic damping parameters given by Cremer
should be understood as orientation values. However, the results seem to be in good agreement.

8. Conclusion

This study presents three methods for identifying damping: the cross-section method, the
amplitude method and the phase method. The last two methods are especially appropriate
because they provide feedback information about the noise, which can be used to stop the
identification process. As is already known [19] for the ridge extraction the phase method was
shown to be slightly better.

Table 7

Damping identification on the beam

Method Time-window (s) z Z ¼ 2 z

First natural frequency (E309 Hz)

CM 0.025–4.924 120.6e–6 241.2e–6

AM 0.025–4.924 120.6e–6 241.2e–6

PM 0.025–4.924 120.6e–6 241.2e–6

Second natural frequency (E851 Hz)

CM 0.015–3.284 164.3e–6 328.6e–6

AM 0.015–3.284 164.3e–6 328.6e–6

PM 0.015–3.284 164.3e–6 328.6e–6

Third natural frequency (E1652 Hz)

CM 0.009–2.630 287.3e–6 574.6e–6

AM 0.009–1.152 391.2e–6 782.4e–6

PM 0.009–1.153 391.1e–6 782.2e–6
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Fig. 9. (a) Ridge of third natural frequency of measured signal (using the PM); (b) logarithm of the amplitude of the

third natural frequency (using the CM), —signal, - - - linear regression.
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While other authors use the Morlet wavelet function, the Gabor wavelet function was used
here. Consequently, the approximation of the continuous wavelet transform for the asymptotic
signals was derived (Eq. (39)). The reason for choosing the Gabor wavelet function is the
possibility of adapting its time and frequency spread.

This study also treats the instantaneous SNR, which provides a better description of the noise
influence on the identification. It was found that the identification was still good, even with a noise
of 0 dB, although for better results the noise should be less than 5 dB.

The analytically defined time length of the edge-effect is not only important for the case of
automating the damping identification, but it is also important if the edge-effect needs to be
reduced. The parameter s of the Gabor wavelet has a critical influence on the edge-effect. A larger
s gives a lower frequency spread and is therefore more appropriate for analyzing close modes, a
consequence of which is a slightly better resistance to noise. However, a larger s also has some
disadvantages: because the time spread increases the reconstruction gets worse; however, the time
spread does not significantly affect the logarithm of the reconstructed envelope so the
identification does not get worse. Usually, an appropriate parameter s has to be chosen, on the
one hand to ensure a small edge-effect and on the other hand, to have the opportunity to analyze
close modes and to get a good reconstruction. By choosing a small parameter s the shift of the
amplitude extreme must be taken into account.

The procedures presented were also tested on a beam; the theoretical model of a damped model
based on the hysteretic damping and the hysteretic damping factor was identified with the
procedures. The results are in accordance with the literature [24].

Appendix A. Approximation of the continuous CWT of an asymptotic signal

According to Delprat [19] a sinusoidal signal, like those presented in Eq. (8), can be represented
as a real part of an analytic signal xðtÞ ¼ ReðxaðtÞÞ; where

xaðtÞ ¼ AðtÞ ei jðtÞ: ðA:1Þ

The connection between the CWT of an analytic and a real signal is Wxðu; sÞ ¼ 1
2
Wxaðu; sÞ [14]. So

the CWT of a real signal is

Wxðu; sÞ ¼
1

2

Z þN

�N

xðtÞcn

Gaboru;s
ðtÞ dt; ðA:2Þ

Wxðu; sÞ ¼
1

2

Z þN

�N

AðtÞ eijðtÞ 1ffiffi
s

p 1

ðs2pÞ1=4
e�ððt�uÞ=sÞ2=ð2s2Þe�iZðt�uÞ=s dt: ðA:3Þ

First substitute the time t ¼ t þ u; then use the Taylor power series expansion close to u: for the
amplitude of order 0: Aðt þ uÞ ¼ AðuÞ; and for the phase of order 1: jðt þ uÞ ¼ jðuÞ þ j0ðuÞðt � uÞ:
After the integration the following expression is obtained:

Wxðu; sÞ ¼ 1
2 AðuÞ #cGaboru;sðj

0ðuÞ; s; ZÞ ei jðuÞ þ Er A0ðtÞ;j00ðuÞ
� �

: ðA:4Þ

Because of the Taylor expansion the generality is lost; however, if the frequency dissipation of the
wavelet function is relatively small then the error Er A0ðtÞ;j00ðuÞð Þ can be neglected (Eq. (11)) [14].
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